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ABSTRACT s
&
. This paper addresses the problem of probabilistic reasoning as it applies to Truth Maintenance ;\
Systems. A Belief Maintenance System has been constructed which manages a current set of 2
probabilistic beliefs in much the same way that a TMS manages a set of true/false beliefs. Such
a system may be thought of as a generalization of a Truth Maintenance System. It enables one N
to reason using normal two or three-valued logic or using probabilistic values to represent partial N
beiief. The design of the Belief Maintenance System is described and some problems are e
discussed which require further research. Finally, some examples are presented which show the e
utility of such a system. 4.0 o ' J’,, - . /'/(,,",1 ST L -8
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This is a revised version of a paper which appears in the Proceedings of the Second Workshop on '
Uncertainty and Probability in Artificial Intelligence, Philadelphia, August, 1986. - N
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1. INTRODUCTION

There currently exists a gap between the theories proposed by the probability and
uncertainty community and the needs of Artificial Intelligence research. These theories primarily
address the needs of expert systems, proposing computational models using knowledge structures
which must be pre-compiled and remain static in structure during runtime. Manyv Al systems
require the ability to dynamically add and remove parts of the current knowledge structure (e.g.
in order to examine what the world would be like for different causal theories). This requires
more flexibility than existing uncertainty systems display. In addition, many Al researchers are
only interested in using “probabilities” as a means of obtaining an ordering, rather than
attempting to derive an accurate probabilistic account of a particular situation. This indicates
the need for systems which stress ease of use and don’t require extensive amounts of conditional
probability information when one cannot (or doesn’t wish to) provide such information. This
paper attempts to help reconcile the gap between approaches to uncertainty and the needs of
many Al systems by examining the control issues which arise, independent of a particular
uncertainty calculus, when one tries to satisfy these needs.

Truth Maintenance Systems have been used extensively in problem solving tasks to help
organize a set of facts and detect inconsistencies in the believed state of the world. These
systems maintain a set of true/false propositions and their associated dependencies. In trying to
reason about real world problems, however, situations often arise in which we are unsure of
certain facts or in which the conclusions we can draw from available information are somewhat
uncertain. The non-monotonic TMS (Doyle, 1979; McDermott and Doyle, 1980) was an attempt
at reasoning when all the facts are not known. Non-monotonic systems, however, fail tc take
into account degrees of belief and how available evidence can combine to strengthen a particular
belief.

This paper addresses the problem of probabilistic reasoning as it applies to Truth
Maintenance Systems. [t describes a Belief Maintenance System that manages a current set of
beliefs in much the same way that a TMS manages a current set of true/false propositions. If the
system knows that our belief in fact, is dependent in some way upon our belief in fact,, then it

automatically modifies our belief in fact, if we give it some new information which causes a
change in belief of fact,. It models the behavior of a normal TMS, replacing its 3-valued logic

{true, false. unknown) with an infinite-valued logic. in such a way as to reduce to a standard
TMS if all statements are given in absolute true, faise terms. We can therefore think of Belief
Maintenance Systems as simply a generalization of Truth Maintenance Systems. whose possible
reasoning tasks are a superset of those for a TMS.

2. DESIGN

The design of the belief maintenance system is based on current TMS technology,
specifically a monotonic version of Dovle’s justification-based TMS (1979). As in the TMS. a
network is constructed which consists of nodes representing facts and justification links between
nodes representing antecedent support of a set of nodes for some consequent node. The BMS
differs in that nodes take on a measure of belief rather than true or faise and justification iinks
become support links in that they provide partial evidence in favor of a node.

The basic design consists of three parts: (1) the conceptual controi structure, {2) the user
hooks to the knowledge base, and (3) the uncertainty calculus. A simpie parser is used to
translate user assertions (e.g. (implies (and a b) ¢))into control primitives. This enahies

EE 2

7oz

ad KT S O3 RO 1| proy g By BRSO K¥

'a rvs!




UIUCDCS-R-88-1300 3 September 1986

Pag® o
.

the basic design to be semi-independent of the belief system used.! All that is required of the Ve,
belief formalism is that it is invertable. Specifically, if A provides support for B and our belief in
A changes, we must be able to remove the effects the previous belief in A had on our belief in B.

4 2.1. An Overview of Dempster-Shafer Theory i

The particular belief system used here is based on the Dempster-Shafer theory of evidence :
(Shafer, 1976: Barnett, 1981: Garvey et al. 1981). This theory combines Dempster’s rule for the B
combination of belief functions with Shafer's representation of beliefs. Shafer’s representation

4 expresses the belief in some proposition A by the interval | s(A), p(A) |. s(A) represents the '&:
current amount of support for A or the minimum probability of A. p(A) is the plausibility of A N

and establishes a maximum probability for A. [t is often best to think of p(A) in terms of the )

by lack of evidence against A, for p(A) = 1 - s(—~A). In this representation, the uncertainty of A's .

probability is given by p(A) - s(A). To simplify calculations, the belief maintenance system

5 represents Shafer intervals by the pair (s(A) s(—A)) rather than the interval 's(A) p(A): G
3 (Ginsberg, 1984). ':-_i
Dempster's rule provides a means for combining probabilities based upon different sources '.\k.
:: of information. His language of belief functions defines a frame of discernment, ©, as the ‘
" exhaustive set of possibilities or values in some domain. For example, if the domain represents -
- the values achieved from rolling a die. 8 is the set of 6 propositions of the form “the die rolled a b
9 i If m, and m, are two basic probability functions over the same space ©, each representing a -
H N . ™ . I
different knowledge source, then Dempster’s rule defines the new combined probability function g
m for all subsets C of © to be .
[} .h,
E ml(Al')m2(B;)
4B, =C -
m(C) = e, ; RN
) 1- 3 myd,)my(B,) o
:. AMNB, =2 GO\
This is also known as Dempster’'s orthogonal sum and is stated as m = m, 2 m,. Note that the .
denominator is a normalizing factor. removing probability given to the empty set and ensuring Y
that the totai probability for the new function is still one. ™~
. . . . R o . . . . hy
Since our primary interest here is :he use of prooaoiiity theory in a deductive reasoning \‘;
i system, we are interested in the case where ¥ contains only two vaiues, A and —=A. For this case, & v
the basic probability function has only three values, m(A), m(—A), and m(©). This allows :he ;:
derivation of a simplified version of Dempster's formula iPrade. 1983: Ginsberg, 1984): e
y | i ba | -
-' (@) Dfed) = 1 - —22 28 | ok
’ | 1 -1ad - 3¢) L —iaa - e} | S
RS
- , , . . . : )
-, where ¢ means (1 - al. [t aiso allows us to lormulate an inverse function for subtracting evidence ;“-,
‘ ‘Ginsberg, 1984): v
{ - 7 v Y - . ey
. . “tad — he: d{be - 1a .
2 g 3) ~ ¢ d) = _-'d__ — _-(c.__l)__‘ 1
W ¢cd - hee — aad +d — s¢c - 1dd ! ‘4-\
Y
. e . . . v
v The decision o0 choose Dempster-Shafer Theory over Bavesian Decision Theory, cerrainty N
A factors, or some other system of beliefs was purely pragmatic. Dempster-Shafer has been snown \i
* Hete we :se “welief” ‘probaviiity” aad "incertainty” interchangaoly. without ntending 1 particuiar :ystem e g Baves s
; Charniak. ot 2l 1980. Pearl. 1983, 1986), Dempster -Shafer -Shafer. 19761 Cartainty Factors Bucaanan and Shortiiffe 1984 ‘.\;.
I 'l‘: )
v
N
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to be invertable, it distinguishes between absolutely unknown (no evidence or (O 0O)) and
uncertain, and it is simple to use. However, the design of the BMS is not based on a particular
uncertainty calculus and there should be little difficulty (as far as the BMS itself is concerned) in
adapting it to use some other belief system.

23.2. A Logic of Beliefs

The conventional meaning of two-valued logic must be redefined in terms of evidence so
that the system can interpret and maintain its set of beliefs based on the user-supplied axioms.

Not
Because Dempster-Shafer theory allows us to express belief for and belief against in a

single probability interval, (not A) and A can simply be stored as the same proposition, A,
where

{20t A} _ A

And
There are a number of approaches to the meaning of AND. The interpretation used here

takes into account the fact that we are dealing with measures of belief rather than probabilities
and corresponds to that of (Garvey et al, 1981):

A('A -
B"a s

{sc S o

(A&B& C"muio.s_‘os!v—sc-ﬂ, maxis_,, ¢ g 3 o)

The -2 term represents (1 - cardinality(conjunctsi).

OR

Both 'Garvey et al. 1981) and ‘Rodewaid. 1984) define "he belief ‘n OR ‘0o be rhe
maximum of rhe individuai beliels:

A \
sy S
B.
3y 4.y
1A v B,

\
maxis,, sg), Maxt0 5 , -8 g-i)}

IMPLIES
There are :wo rheories in "he iiterature jor the interpretation of impiies using Dempster-
Shafer. ‘Dubois and Prade. 1985 suzgests that. for A—B. we rake into account the vaiue of
BeilB— 1). This causes :he beiiet n B ro pe derived as

VI W
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(A —B)
(B — A)

(srl ’11)
(‘d ’-r‘l)

(55 5-4)

(max(0, s, +s,-1) max(0,s,+3,-1)

Because the BMS should be simple to use and because Bel(B—A) can be difficuit to obtain, the
use of implies will be the same as given in (Ginsberg, 1984; Dubois & Prade, 1985):

(A — B)(', )
A(’A s

5‘» »l

(s,‘sI 8.9

This adheres ro the tdea that if full belief in A implies B»).a'
B

LAR |

then a half belief in A should imply

0.¢

kxS

With these operators defined, the system can parse all user assertions and construct the
necessary support links with the appropriate belief functions attached to them.

2.3. Support Links

NAS

A support link consists of a list of antecedent nodes, a consequent node, its current positive
and negative support {or its consequent, and a function for recalculating its support based on the
current belief of the antecedents (when the support is provided by the user, forming a premise
link, no such function exists). Figure | shows a sample support link network. The system
@ recognizes two types of support links - hard links and invertable links.

O

2.3.1. Hard Support Links

A hard support link is one which provides an absolute statement of its consequent’s belief.
For example, statements of the form
R
A~

A
~ (0.5 . 0.0)
\\

. A&B  1.0.0.0) C
> 2_’ (0.2 . 0.0) ~(0.15 . 0.24)

(0.7 .0.0) D —"00.07

M (0.4 .0.0)

vl

Figure 1. A Sample BMS Network
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(implies x (and y z))

are translated into

(implies x y)

{implies x 2)
As a resuit, nodes are never allowed to give support directly 1o an "and” node and the oniy
support entering an "and” node must come from the individual conjuncts. A support link for an
"and” node is therefore given the status hard link and the value of the consequent node equals the
link’s support. In Figure 1, if the belief in A changes, a new value is calculated for the
conjunctive link using its attached formula for AND, and the node for (AND A B) is set to the
new value.

2.3.2. Invertable Support Links

Links representing implication or user support act as only one source of evidence for their
consequent node. Such links are designated invertable since a change in their support means that
their oid support must be subtracted (using the inverted form of Dempster’s ruie} before the new
value is added. In Figure 1, if the belief in D changes, then the current support provided by D’s
link into C is subtracted, the link support is recalculated, and the new support is added to C
(using Dempster’s rule).

2.4. Control

The basic control structure of the BMS is similar to that of a TMS. When the belief in a
node is modified, the affects of this new belief are propagated throughout the system. This is
done by following the node's outgoing links and performing the appropriate operations for
modifyving hard and invertable links’ support. Propagation of evidence may be defined so as to
terminate early (Ginsberg, 1985a). I[f the system sees that the change it has just made o a
node’s belief state is sufficiently small, there is no need for it to propagate this change to every
node dependent upon it. A threshold value, *propagation-delta®, is defined so that, when the
change to a node's positive and negative beliefs are less than the threshold. the syvstem will not

continue to propagate changes past this node. The default threshold is 107,

[n a TMS architecture. only one justification is needed to establish truth. Anv independent
justifications are extraneous. Using a probabilistic architecture, each source of support adds :o
the node’s overall belief. We must keep track of all incoming supports, combining them using
Dempster's rule to form the overall belief for the node. If one tries to combine two contradicting,
absolute beiiefs, {1 0) 5 {0 1), the system would simply detect the attempt and signal a
contradiction in the same way that a TMS would. Thresholds could also be used so that if a
strongly positive belief is to be combined with a strongly negative belief. the system could signai
a contradiction. Caution should be used for this case, however, because we don't want ro
interpret non-monotonic inferences as contradictions.

2.4.1. New Control [ssues

Circular support structures like that of Figure 2 cause a number of problems for heiief
maintenance. Because of these problems., the current implementation requires that no such
structures exist and it wiil signal an error if one is discovered. There are a variety of proplems
which the structure in Figure 2 can cause:

(1) [Interpretation of circular evidence. When A is partially believed and the status of E is
unknown. what can be said about rhe support which D provides to B? All of the evidence D
is suppiving 7o B ariginally came ‘rom B in rhe first place. Because all iinks entering B 111

s
%l
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Figure 2. Circular Support Structure

(2)

(3)

combine according to Dempster’s rule to form a single belief. B mayv be believed more
strongly than A simply because B supplies evidence in favor of D through C. This does not
seem intuitively correct.

Problems with posstble cures. There are several potential solutions to this problem. First,
we could simply allow D to provide support for B. This situation would appear to be
undefined under normal probability theory. Second, we could stop the chain at D by not
allowing any node to provide support to one of its supporters (by transitivity). This
introduces a new problem. What should happen when E is providing independent support
for D? Forcing the system to only propagate those supports for D which are independent of
B would require a much more sophisticated control structure.

Retraction or modification of support. Modifying support links becomes much more difficult
if we allow circular support structures to exist in the system. Any time the support A
provides B changes, the old support it provided must be retracted. This means removing
all support from A. propagating the change in B, adding in the new support from A. and
propagating the new belief in B. This will cause the belief in C o be propagated four times
(twice when B changes the first rime and twice when B changes rhe second time). the belief
in D to be propagated 3 times, etc. [n addition. retracting the support A provides B means
that we must retract ail support for B (to remove the effects D has on B), propagate rhe
new lack of belief in B. and then recalculate a new belief for B based on the new value for A
and the current values of its other support links. Doing this every time rhe belief for anv
node changes makes such a system unusable. When we assume there is no circular suppor-
in the network. modifying our belief in A simply involves subtracting its old support for B.
adding in its new support for B. and then propagating our new belief in B.

The use of beliefs also causes probiems for systems that expiicitly calculate transitiviry

relations. Suppose we were ro assert A — C based on the knowledge A — B and B — C. This

-~

action would cause the svstem's belief in C to increase, even thougn we were simplv making
information which already existed explicit.

2.5. User Support

The system has been designed so that it will appear to operate in exactly the same manner
as the standard justification-based TMS. Thus, it is able ro handle assertions using -he
connectives AND, OR, NOT. and IMPLIES. If a contradiction occurs. the svstem will notify rhe

A%
4

.
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user and seek to resolve the contradiction. I[n addition to the normal TMS operations, the BMS
supports additional operations corresponding to its belief-oriented knowledge.

2.5.1. Queries

'n the TMS, queries are of the form (true? statement). Now that truth is measured in rerms
of belief, we can extend the query language. Truth is redefined in terms of a threshold, so that a
belief over a certain threshold is considered to be true.

true? = belief+(node) > *belief-threshold*
false? = belief-(node) > *belief-threshold*
unknown? = belief+(node) < *belief-threshold*
and belief-(node) < *belief-threshold*
absolutely-true? = belief+(node) = 1.0
absolutely-false? —= belief-(node) = 1.0
absolutely-unknown? = belief+(node) = 0.0
and belief-(node) = 0.0
support—for = belief+(node)
support—against = belief-(node)
possible-true = 1 - belief~(node)
possible-{alse = 1 - belief-(node)
belief-uncertainty = 1 - belief-(node) - belief—(node)

2.5.2. Frames of Discernment

In addition to the default usage of the simplified version of Dempster’s rule, where each
node is treated as a frame of discernment, ©, containing |A, —A}, the user may define a specific
frame of discernment by the function call:

frame-of-discernment node, node, ... node,)

This estabiishes a frame-of-discernment stating that the given nodes represent an exhaustive set
of possibilities or values in some domain. Evidence in favor of one node acts to discredit beiief in
the other members of the set. Evidence may be provided to support any of the nodes !rom
outside rhe set, but no support link is allowed to change from its initial non-zero vaiue. This is
due to the {current) uninvertability of the general form of Dempster's rule. When new evidence
is provided for one of the nodes in the set. the belief in all the nodes is recalculated according "o
Dempster’'s orthogonal sum so that the sum of the beiiefs for the nodes in the set is iess-than or
equal-to one. The aifect of these changes are then propagated to any support these nodes
provide to the rest of the system.

In Figure 3. the nodes 'a. b, ¢! have been defined as a frame of discernment. x provides 0.6
support for a., 7 provides 0.3 support for b. and z provides 0.8 support for <. These
independent sources of evidence combine using Dempster’s orthogonal sum to form a normaiized
set of beliefs in 2. 5. and ¢ 10.22, 0.06. 0.38 respectiveiv).

2.8. Rule Engine

Because the BMS does not allow variables to exist in the xnowledge base. pattern-directed
rules are required to provide demons which trigger on certain events in the knowledge base
i McAllester. 1980: Charniak et al, 1980). The rules are of the form:

&
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>(frame-of-discernment a b ¢)
>{assert (1mplies xa))
>{assert (1mpliesyb))
>(assert (implies z ¢))
>(assert x 0 6)
>(asserty0.3)

>(assert z 0.8)

>(why-nodes)

X has evidence (0.6, 0.0) due to

USER (0.6, 0.0)
Y has evidence (0.3, 0.0) due to

USER (0.3, 0.0)
Z has evidence 0 8, 0 0) due %o

USER (0 8, 0.0)
USER-THETA1 has evidence (0.1443, O O) {uncertainty for the entire frame - m(6)}
A has evidence (0O 2165, 0.0) due to

IMPLICATION(X) (0.6, 0 0)
B has evidence {0 0619, 0 0) due to
IMPLICATION(Y) (0.3, 0.0)
0
o}

(o]

C has evidence (0 5773, 0 0) due to
IMPLICATION(Z) (0.8, 0.0)

Figure 3. An Example of a Frame-of-Discernment

(rule (nested-triggers) body)
For example, the rule

(rule ((:INTERN {(dog ?x)))
(assers {(implies {dog ?x) {(mammali ?x%;;)]

causes the implication (implies (dog fido) (mammal £ido)) to be asserted when (dcg
2ido) first appears in the knowledge base {whether it is believed or not).

The rule

‘ruie (( INTERN (foo °x) <:est {(numberp ®x) ~ar the-form-£oo)
(:BELIEF+ (bar ®y) 0.8 :var ”the-form-bar)
(:BELIEF- (mumble ?z) 0 9 <var *the-form-mumble))
format t ""%"A 1s been interned" *the-form-foo)
Tformat

snows all of the pctentiai operations in a rule. Each trigger contains a keyword ie.3. :INTERN,
a pattern (e.g. (foo ’x)), an optional test which must be true for the rule to fire. and an optional
var argument which causes a specified variable to be bound to the trigger's instantiated pattern.
There are three types of rule triggers. The : INTERN trigger causes the rule to :ire each time a

- — .

1ew fact is added ro the knowiedge base which matches -he given pattern. The 3T_II7+ riggor

v
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causes the rule to fire each time the support in favor of an instance of its pattern first exceeds the o
specified value. A BELIEF - rule fires when the support against its pattern exceeds the specified .
value.
‘f
L4
3. EXAMPLES i,
There are a number of possible uses for a belief maintenance system. [t enables us to
perform normal TMS, three-valued, deductive logic operations. [t also enables us "o reason w.th .-
probabilistic or uncertain information. The following sections discuss some of the applications S
for the BMS.
r\
;
3.1. Two-Valued Deductive Reasoning o
The system’s design has enabled us to think of it as a superset of a TMS. As a result. we
can make assertions such as b
(assers {implies a b))
\assert (izp.ias o 2.,
(assert a)
and the system will automatically propagate the fact that © and = are triue If we then - uren -
that ¢ was false, the system would signal a contradiction and indicate *nat he contrac. o .
results from the two aser premises a ana ‘2c% .. <
’
3.2. Probabilistic Reasoning
In addition to true false deductions, the belief maintenance system is able to state rne .-
current partial belief in a particular item and the sources of this belief. For exampie. in Fig.re 3
C has a belief of 0.9 since all of the beliefl in A serves as evidence “or 2. 2. on rhe arner ~ars .

. - . . , - . - e
has a belief of only 0.27 since T implies Z by oniv 0.3, Z has "wo sources of exidence 2 oo oo- oy
1.9 evidence in favor of Z. while G provides 0.36 evidence agains: Z. )
3.3. Non-Monotonic Reasoning —

bd
A beliefl maintenance system s able *o handle non-monotonic reasoning much Tore
2legantiy “han a :wo or ~hree valuea logic :s aoie <o (insberg, 1984, 1953b,. “onsider "ne - us-.¢ .
lon-monotonic prodiem about birds n zenerai” oeing able to fly. [f one were -0 repiace 1 -1e "
using Dovle’s 1 1979) consistency operator
bird(Xi A M fviX, — AyX: - |
N
. e . . 2 . ‘e
with a probabilistic one stating that roughly 90 to 95°¢ of all birds fly
‘hi kd — .0 Ry
tbird ’x) tly *Xlg 90 0 03) e
o
rhe desired non-monotonic behavior romes automatically from negative riles such as
. -
vostrich *x) — fly x), .
A 1 .. 4
) . ‘ . . . sa- ) 1
lf we know Tweety to be 1 bird ana an ostrich. -he two riles will combine o deduce (7.7 )
T@eety, , ,, or {2ct [Ily twe2ty’) . No modifications of rhe controi structurs are N
¢ ' by
needed to perform non-monotonic reasoning.
Y
N
bR}
L
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>(assert (implies (or a b) ¢))

>(assert (implies ¢ d (0.3 0.9)))
>(assert {implies ¢ a))

>(assert (implies (and a f) (and g h)))
>(assert (implies g (not e) (0.4 . 0.0)))
>(assert a 0.9)

>(assert f)

>(why-nodes)

F is a premise.

(AND A F) has evidence (0.9, 0.0) due to
CONJUNCTION(F A) (0.9, 0.0)

H has evidence (0.9, 0.0) due to
IMPLICATION((AND A F)) (0.9, 0.0)

G nas evidence (0.3, 0.0) due to
IMPLICATION((AND A F)) (0.9, 0.0)

E has evidence (0.8521, 0.0533) due to
IMPLICATION(G) (0.0, 0.36)
IMPLICATION(C) (0.9, 2.0)

D has evidence (0.27, 0.0) due to
IMPLICATION(C) (0.27, 0.0)

B is unknown

A has evidence (0.9, 0.0) due to
USER (0.9, 0.0)

(OR A B) has evidence (0.9, 0.0) due to
DISJUNCTION(B A) (0.9, 0.0)

C has evidence (0.9, 0.0) due to
IMPLICATION((OR A B)) (0.9, 0.0)

Figure 4. Probabilistic Deductive Reasoning

3.4. Rule-based Pattern Matching

The belief maintenance system has been used to implement a rule-based. probabilistic
pattern matching algorithm which is able to form the type of matching tvpical in analogies in a
manner consistent with Gentner's Structure-Mapping Theory of analogy (Gentner, 1983:
Falkenhainer. Forbus, & Gentner, 1986). For example. suppose we tried to match

(AND (CAUSE (GREATER (PRESSURE beaker) (PRESSURE vial))
(a) (FLOW beaker vial water pipe))
(GREATER (DIAMETER beaker) (DIAMETER vial)))

(AND (GREATER (TEMPERATURE coffee) (TEMPERATURE ice-cubde))
(b) (FLOW coffee ice-cube heat bar))

A standard unifier would not be able to form the correspondences necessary for those two forms
to match. First, the forms are different in their overall structure. Second, the arguments of
similar substructures differ, as in (FLOW beaker vial water pipe) and {(FLIW coffee
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ice-cube heat bar). The rule-based pattern matcher, however, is able to find all consistent
matches between form (a) and form (b). These matches correspond to the possible
interpretations of the potential analogy between (a) and (b). They are

(GREATER (PRESSURE beaker) (PRESSURE 71al)) —
) (GREATER (TEMPERATURE coffee) (TEMPERATURE ice-cubs))
(FLOW beaker vial water pipe) «~ (FLOW coffee ice-cube heat bar)

(GREATER (DIAMETER beaker) (DIAMETER vial)) o
(2) (GREATER (TEMPERATURE coffee) (TEMPERATURE ice-cube))

The pattern matcher works by first asserting a matchk hypothesis for each potential predicate or
object pairing between (a) and (b) with a belief of zero. For example, we could cause all
predicates having the same name to pair up and all functional predicates (e.g. PRESSURE) to
pair up if their parent predicates pair up (e.g. GREATER). The likelyhood of each match
hypothesis is then found by running match hypothesis evidence rules. For example, the rule

(assert same-functor) | provide & name for tRe source of the rule’s support }

(rule (( intera (MH ®11 ”12) .test (and (fact? ?11) (fact? ?12)
(equal-functors 211 ?12))))
(assert (implies same-functor (MH ?il ?i2) (0.5 0.0))))

states “If the two items are facts and their functors are the same, then supply 0.5 evidence in
favor of the match hypothesis.” After running these rules, the BMS would have the beliefs shown
in Figure 3.

L Match _Hypothesis " Evidence |
‘[ (MH GREATER,,,,, GREATER. ) ' 0850 |
(MH GREATER,,_,, GREATER._... ~ 0850 .
(MH PRESSURE,,_,_ TEMPERATURE_ ) | 0712 |
3 - !
: (MH PRESSURE , TEMPERATURE, ) | 0.712 :
| (MH DIAMETER,_, TEMPERATURE, ]  0.712
(MH DIAMETER,, TEMPERATURE,,) | 0712
(MH FLOW_, FLOW, ) oT0
(MH beaker coffee) . 0.932
(MH vial ice-cube) 0.932
(MH water heat) 0.632
(MH pipe bar) 0.832

Figure 3. BMS State After Running Match Hypothesis Evidence Ruies
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The pattern matcher then constructs all consistent sets of matches to form global matches

‘ such that no item in a global match is paired up with more than one other item. (1) and (2) are
examples of such global matches. Once the global matches are formed, the pattern matcher must

select the “best” match. To do this, a frame of discernment consisting of the set of global

=~ matches is created and giobal match evidence rules are used to provide support for a giobai
S match based on various syntactic aspects such as overall size or “match quality”. For example,

we could have match hypotheses provide support in favor of the global matches they are
' members of. Thus, the pattern matcher would choose global match (1) because the match
o hypotheses provide the most support for this interpretation. This is a sparse description of the

matching algorithm discussed in (Falkenhainer et al, 1986).

)': 4. CONCLUSIONS
The design of a belief maintenance system has been presented and some of its possible uses
:.E described. This system differs from other probabilistic reasoning systems in that it allows
Y dvnamic modification of the structure of the knowledge base and maintains a current belief for
every known fact. Previous systems have used static (compiled) networks (Pearl, 1983, 1986;
v Buchanan et al, 1984) which cannot be dynamically modified or simple forward chaining
& techniques which don’t provide a complete set of reason-maintenance facilities (Buchanan et al,
1984; Ginsberg, 1984, 1985).
:;:' There are still a number of unsolved problems. First, the interpretation and efficient

implementation of circular support structures needs to be examined further. Second, operations
such as generating explicit transitivity relations cause new problems for belief based reasoning
- systems. What is important to note is that the basic design is independent of the belief system
. used. For any given uncertainty calculus which is invertable, the assertion parser can be
modified to construct the appropriate network.
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